RESEARCH STATEMENT
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My research subjects lie under the illusive name - mathematical physics. My main
subject of research is spectral geometry of metric graphs, also known as quantum graphs.
Much of my work is motivated from quantum chaos. My research includes questions and
methods that relate to other mathematical disciplines such as

(1) Graph theory.

(2) Statistics and Probability in high dimensions.
(3) Riemannian Geometry.

(4) Stable Polynomials (real algebraic geometry).
(5) Dynamics and Ergodic theory.

The research statement is divided into two sections, the first regards metric graphs and is
partitioned according to my recent works: universal nodal count [ABB21] joint with Band
and Berkolaiko, Neumann domains [AB21] joint with Band, and a work in progress on
genericity [Ald]. The second section describes a new work in progress, joint with Cynthia
Vinzant, on Quasi-Crystals using a recent construction of Kurasov and Sarnak [KS20] in
terms of stable polynomials. These technical terms and the Kurasov-Sarnak construction
are explained and motivated in the second section.

Before discussing metric graphs, let me introduce two open problems in spectral geom-
etry and quantum chaos, that serve as a motivation for my work. Consider the “simple”
case of domains in R?, i.e. planar domains. The spectral properties are commonly given
in terms of eigenvalues and eigenfunctions of the Laplacian with Dirichlet boundary con-
ditions. An example of relation between the geometry and the spectrum of a planar
domain € is the Weyl law [Wey11], by which the asymptotic growth rate of the spectrum
is ﬁ area(€2). A more settle question concern the fluctuations around the asymptotic
growth, which can be captured by the gaps between consecutive eigenvalues. A famous

open problem, formally stated by Bohigas-Giannoni-Schmit [BGS84], says (roughly)

Conjecture 0.1. [BGS84| If the “billiard flow” on a planar domain is chaotic, then the
(properly normalized) gaps distribution is universal, and agree with that of GOE random
matrices.

This was the starting point of the field of quantum chaos, as described by Berry in
[Ber87]. In fact, in [BGS84] a broader class of chaotic systems was considered, but later on
counter examples were found, see [Sar93]. Berry also conjectured that the eigenfunctions of
a chaotic system should have universal behaviuor. Their local behaviuor should agree with
random (Gaussian) linear combinations of plain waves (often called random waves). An
example of eigenfunction’s property that is believed to fluctuate in a universal manner is
the nodal count. Given a planar domain () and its n-th eigenfunction f,,, the nodal count
Vp is the number of connected components of {z € Q : f,(x) # 0}. Blum-Gnutzmann-
Smilansky [BGS02] and Bogomolni-Schmit [BS02] conjectured:

Conjecture 0.2. [BGS02, BS02] Given a chaotic domain in the plane, its nodal count

v, 1s distributed as a Gaussian with mean and variance of order n.
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This conjecture is still open, but progress was made by Nazarov-Sodin regarding the
nodal count of random waves, see [NS09, INS20].

The name “quantum graph” first appeared in the work of Kottos and Smilansky [KS97]
where they considered a model of a 1D Laplacian on a metric graph with @—independentﬂ
edge lengths (we will refer to those as metric graphs). Kottos and Smilansky suggested
that such metric graphs are good paradigm for quantum chaos, as numerically their spec-
trum has GOE like behaviuor, as expected from chaotic systems by Conjecture 0.1} Barra
and Gaspard [BGO0], gave a description of the spectrum of such system using an ergodic
map on a hypersurface in a high-dimensional torus. Using which they found a deviation
of the gaps distribution from GOE. However, they conjectured that this deviation from
GOE should go to zero as the graph structure grows. Hence, a more appropriate paradigm
for chaos was suggested - growing sequence of metric graphs with Q-independent
lengths.

1. SPECTRAL GEOMETRY OF METRIC GRAPHS (QUANTUM GRAPHS)

A metric graph is a 1D manifold with singularities. The singular points are the vertices
of the graph and every edge is a 1D segment. We denote such a metric graph by (T',¢),
with graph structure given by I', a finite connected (discrete) graphﬂ of £ > 1 edges.
The metric is determined by the vector of edge lengths ¢ = {l.}, € RY. On the metric
graph we define a 1D Laplace operator with Neumann-Kirchhoff vertex conditions. The
spectrum of (T, ) is then the sequence of (square-root) eigenvalues denoted by

0:k0<k1§k2§k3.../‘00

including multiplicity. This model, and its generalization to any Schrodinger operator
acting along the edges, appeared in various scientific disciplines in the last few decades,
modeling complex phenomena such as superconductivity in granular and artificial ma-
terials [Ale83], acoustic and electromagnetic wave-guide networks [BK03] and Anderson
localization [CMV0G, [SS00] to name but a few. We will only consider the the “simple”
geometric setting of Laplacian (without magnetic or electric potential) and Neumann-
Kirchhoff vertex conditions. This model which we will call a metric graph already serves
as non-trivial one-dimensional model for spectral geometry, where exotic mathematical
phenomena can often occur. For example, some graph structures have frequent appear-
ance of scars (unusual localization of eigenfunctions) [BKWO04, [(CdV15]. Another example,
number theoretic in nature, is a recent work by Kurasov and Sarnak on the arithmetic
structure of the spectrum of a metric graph. They show that if the edge lengths are Q-
independent, then the spectrum is infinite dimensional over Q and has a bound on the
maximal length of arithmetic progressions in it.

1.1. Universal nodal count for metric graphs. Conjecture|0.2says that for a chaotic
domain, the nodal count v,, has a universal behaviuor:

v, = Cn + cy/no,

IThe term Q-independent means that there is no (non-trivial) solution ¢ € Q¥ to £- ¢ = 0.
2For ease of presentation we restrict the discussion to simple graphs, i.e. every edge has a unique pair of
two distinct vertices. We also assume no vertices of degree 2 as these are removable singularities.
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where the constants C, ¢ may depend on the domain and o ~ N(0, 1) has normal distri-
bution. Namely, for any a < b

<N :ag<=fn< }‘
. Hn_N a < P <b
N—o00 N

= Pla<o<b)

However, we do not even know how to prove that the above limits exist.

In the case of metric graphs, we conjecture that a similar universal behavior accrues
in the limit of large graphs. Unlike the 2D case, for graphs we can show that the ana-
log limits exist and even prove the Gaussian behaviuor for certain families of graphs
[ABBI18, [ABB21]. The nodal count v, for a metric graph (T',¢) is the number of con-
nected components of {z € (I',¢) : f.(z) # 0}. The nodal count for metric graphs exhibit
an upper bound similar to that of the 2D case, but also a lower bound, unlike the 2D case.

n_ﬁgyngna

where [ = rank(m;(I")) is the first Betti number of the graph (intuitively, the number of
cycles). The upper bounded was proved in [GSWO04] (applying Courant’s method [Cou23|
to the metric graph), and the lower bound was proven in [Ber(8]. Motivated by Conjecture
0.2] we define a distribution o over {0,1,..., 3} such that v, is distributed as

Vp =N — 0,

in the following sense:

Lo RSN v =0
R T
The existence of these limits is obtained in [ABBIS]|, assuming Q-independent lengths,
which we will always assume. The proof relies on the “nodal-magnetic” relation [BW14]
which characterize the deviation n — v, as a Morse index of the eigenvalue k,, under mag-
netic perturbations. Then, applying an ergodicity argument from [BGO0|] to replace the
average over the spectrum with integration over a certain hypersurface in an E-dimensional
torus. We also show in [ABB1§| that ¢ is symmetric with mean E(o) = g We call o the
nodal surplus distribution and denote it by o(I', £) to emphasize its (I, £) dependence. By
identifying a certain family of symmetries of this construction, we obtained o(T",¢) for a
specific family of growing graphs with Q-independent ¢’s.

Theorem 1.1. [ABBIS] If I' has vertex-disjoint cycles and ¢ is Q-independent, then
o(T,¢) is Binomial with parameters Bin(p, %) In particular, it converges to a Gauss-
1an as 3 — oo.

In a recent work [ABB21], we formulate Conjecture [0.2| for metric graphs.

Conjecture 1.2. [ABB21] The distance between o(I',¢) and the Gaussian distribution
of same mean and variance goes to zero as [ — oo, uniformly over all (T',¢) with Betti
number B and Q-independent .

We also conjecture that the variance growth is of order 8. A detailed and more quantified
statement is given in [ABB21]. In [ABB21] we prove the conjecture for two more families
of graphs. We also show that o(I',¢) is convex in £. We provide an upper bound, C(T'),
to the distance of o(I",¢) from the relevant Gaussian. This bound is uniform in ¢, and
can be numerically evaluated (efficiently). In [ABB21] we calculated C(I") numerically for
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25 different graph structures, including random and deterministic, and a clear decrease of
C(T") in terms of /3 is evident.

1.1.1. Future work and questions.

(1) Are there any relations between the nodal surplus distributions of a graph and its
sub-graphs?

(2) Are there any models of random graphs for which o (T, ) can be estimated?

(3) In the proof of Theorem [1.1] the symmetries are related to a “cut of one edge” (an
edge whose removal disconnects the graph), and result in a partition of ¢ to a sum
of uncorrelated random variables. This can be extended to graphs with disjoint
clusters of cycles using martingale CLT results.

(4) We also believe that the method of 1-edge cuts can be extended to larger cuts, which
will result in a partition of ¢ into a sum of weakly correlated random variables.
This may lead to a proof of the Gaussian limit for clusters of cycles.

1.2. Neumann count. The concept of a Neumann partition was introduced indepen-
dently in [Zel13l IMF14], in analogy to nodal partitions of manifolds, and was further
developed in [BE16, BET17]. The Neumann partition is a Morse partition of the man-
ifold according to an eigenfunction. Connected components of the Neumann partition
are called Neumann domains. The name “Neumann domain/partition” reflects the fact
that a restriction of an eigenfunctions to its Neumann domain is an eigenfunction of that
Neumann domain with Neumann boundary conditions. We define a metric graph analog
in [ABBE20, [AB21]. The n-th Neumann partition of a metric graph (I", £) is given by re-
moving the critical points along the edges. We denote the Neumann count by pu,,, namely
the number of connected components of {x € (I',¢) : f/(x) # 0}. In [AB21], we provide
topological upper and lower bounds on the Neumann count:

n+2—28—|0T < pp <n+pB,
where || is the number of degree 1 vertices of I'. Similarly to the nodal count, we adopt
a probabilistic setting:
fin =1 — W,
where w is a distribution on {—4,...,28 + |0T'| — 2} such that
SN e =)
N—o0 N

We show in [AB21] that these limits exist for any graph with Q-independent ¢, and that
(W) = B+\<92F|—2

P(w=j):=

w is symmetric around its mean E . This result has implications to inverse

problems:

(1) The nodal count and Neumann count provide different information on the graph
structure. For example, 0 = 0 for every tree graph (since 5 = 0), however w can
distinguish between trees of different |OT|, since E(w) = 28=2.

(2) Given access to both E(w) and E(c), we get 5 and |0'| and thus bounding the size

(number of edges and vertices) of the graph structure.

Similarly to the nodal distribution, we conjecture that the Neumann distribution has a
universal Gaussian behaviuor as 5+ |0T'| grows to infinity. Following [ABB18|] we prove a
binomial result. Call a graph (d, 1)-regular if its vertex degrees are either d or 1.
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Theorem 1.3. [AB21] If I is a (3,1)-reqular finite tree and ¢ is Q-independent, then
w(L, 0) is Binomial with parameters Bin(|0T| -2, 1). In particular, it converges to Gauss-
ian with |OT| — oo.

1.2.1. Future work and questions.

(1) Are there two different graphs with the same nodal and Neumann count?

(2) Is there a Neumann count analog to the nodal-magnetic theorem [BW14]. The
method of proof of suggests that the analog of magnetic flux should relate to
degree 3 vertices.

(3) Numerically, it seems that the bounds —f < w,, < 25 + |0I'| — 2 are not optimal.
We conjecture in [AB21] that better bounds hold 0 < w,, < g+ |0T'| — 2.

1.3. Generic properties of eigenvalues and eigenfunctions. Fixing a graph struc-
ture I and letting the metric ¢ change, we can consider the pairs (k,, f,) as functions of
¢. When considering properties of eigenfunctions, we neglect the trivial pair k; = 0 with
constant eigenfunction f; = C'. As a motivational example, consider the seminal generic-
ity result of Uhlenbeck on compact Riemannian manifolds [UhI72], which says that given
a fixed manifold, for a Baire-generic choice of smooth metric, every pair of eigenvalue A,
with eigenfunction f, satisfies:

(1) A, is a simple eigenvalue (no multiplicity).

(2) fnis Morse. That is, V f,(x) =0 = the Hessian of f, at z is invertible.

(3) 01is not a critical value of f,,. Namely, f,(z) =0 = V/f,(z)#0.

Similarly, Friedlander [EFri05] and Berkolaiko-Liu [BL17] proved that given a graph struc-
ture I', for a Baire-generic choice of ¢, every (k,, f,) pair of (I, ¢) satisfies propertiesﬂ (1),
(2) and (3) as above, and in addition

(4) f. does not vanish on vertices.

In [ABBIS] we show that the implicit set of “good” ¢’s, can be replaced by an explicit
criteria, if we relax all pairs to almost every pair, in the sense of a density 1 subsequence.

Theorem 1.4. [ABBIS] Given a graph T, for any Q-independent ¢, almost every pair of
(T, 0) satisfies properties (1),(2),(3) and (4).

Let G C Rf be the set of £’s satisfying all of the properties above. Then, Baire-genericity
means that GG contains a countable intersection of open-dense sets. A priori such a set
may have zero Lebesgue measure. Call G strongly-generic if its complement RY \ G is
contained in a countable union of lower dimensional varieties. A strongly-generic G is
Baire-generic and has full Lebesgue measure.

Theorem 1.5. [Alo] Given a graph T, the set of {’s for which properties (1),(2),(3) and
(4) hold for all pairs is strongly-generic.

One way of interpreting (4) is saying that generically eigenfunctions do not satisfy
the “extra vertex condition” f,(v) = 0. Vertex conditions are usually linear relations
imposed on trace(f,,), the vector of all values and normal derivatives of f,, at the vertices.
Let us generalize the vertex conditions to a broader notion of homogeneoug] relations:
q(trace(f,)) = 0 where ¢ is a homogeneous polynomial. We say that a relation ¢ is trivial
(on I') if g(trace(f,)) = 0 for all pairs of (I",¢), for any ¢. In [Alo] we prove that

3To be precise, (1) is proved in [ETi05], and (4) in [BLI7]. Properties (2) and (3) are not stated but follow
trivially from (4).
4Homogeneous because we care about eigenfunctions up to a multiplicative constant
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Theorem 1.6. [Alo] Given a graph T' and non-trivial homogeneous relation q,

(a) the set of {’s for which q # 0 on all (I',¢) pairs is strongly-generic.
(b) for any Q-independent ¢, q # 0 on almost any pair of (I, ().

Future work:

(1) Working on a conjecture of Sarnak, saying that generically the spectrum of (I, ¢)
should be Q-independent.

(2) Working on a conjecture of Quantum Unique Ergodicity for graphs with Q-independent
¢ when the graph size and complexity grows to infinity.

2. QUASI-CRYSTALS AND STABLE POLYNOMIALS

A crystal, from a physical point of view, is a system of atoms in a lattice structure, such
as metals and semi-conductors for example. The lattice structure can be experimentally
observed by a scattering experiment, the diffraction pattern would have peaks at the dual
lattice locations. Mathematically, this phenomena is described by the following duality,
known as Poisson summation formula. If A is a lattice whose dual lattice is S, then the
distribution p defined as a sum of unit mass atoms along the points of A, has a Fourier
transform jz which is a distribution with unit mass atoms along the points of S. In other
words, for any rapidly decaying f with Fourier transform f ,

> fw)y=> (k).

zeA keS
One may ask are there any other pairs of such “dual” discrete sets A and S for which
such a relation holds? Generalization of this form were considered by Meyer in the 70’s
but it was believed that no such physical system exists. A decade later, Shechtman
discovered a Quasi-crystal in an experimemﬂ a discovery for which he was awarded the
2011 Nobel prize. In the context of metric graphs, a summation formula of similar nature
was introduced in dependently in [KS97] and [Rot95]. Given a metric graph (I', ) with
(square-root) eigenvalues k, for n € N, call its set of periodic orbits P(I') and for each
periodic orbit v let £, be its length. Then for any “nice enough” function f with Fourier

transform f,

(2.1) S fk) = > e flLy),

veP(T)

where c, are some fixed complex coefficients. Kurasov and Sarnak had showed that
holds for all rapidly decaying function f and that the coefficients grow slowly
> oep ley|f(£,) < oco. The associated measure p = S.°° 8, in such case is said to
be a Fourier Quasi-Crystal, see [LOI15]. This led Kurasov and Sarnak to the follow-
ing construction of such quasi-crystals. We call p € Cl[zy,25...2,] a stable polynomial
if p(z1,22...2,) # 0 whenever all |z;] < 1 or all |z;| > 1. Consider the notation
exp (if) := (e"1,...,e"), and for any ¢ € R" let p,, be the measure given by a sum of
unit mass atoms on the zero set {k € R : p(exp (ik¢)) = 0}. Then pu,, is a Fourier quasi-
crystal [KS20]. Since p is stable, then the trigonometric polynomial F'(k) := p(exp (ik))
has only real roots, in which case it is called a real rooted trigonometric polynomial. Fol-

lowing [KS20], Olevskii and Ulanovskii showed in [OU20] that a measure p which is a

5A scattering experiment where the diffraction pattern had sharp peaks with a 5-fold symmetry which no
lattice can have.
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sum of unit mass atoms on a discrete set A is Fourier quasi-crystal if and only if A is the
zero set of a real rooted trigonometric polynomial. A priori, the construction of Olevskii
and Ulanovskii may contain measures that are not coming from stable polynomials. How-
ever,in a work in progress, joint with Cynthia Vinzant, we conjecture that this is not the
case.

Conjecture 2.1. [AV] Given any real rooted trigonometric polynomial F'(k),

(1) There ezists a stable polynomial p € Clz1, 25 ... 2,| and a positive vector { € R’}
such that F (k) = p(exp (ik?)).
(2) If F(k) is not periodic, then p and ¢ can be chosen such that { is Q-independent.

If true, it would mean that the space of all such Fourier quasi-crystals can be constructed
out of the space of stable polynomials which has been studied. In [AV] we provide a
“dictionary” between properties of stable polynomials and properties of Fourier quasi-
crystals. We also show that some spectral properties of metric graphs can be translated to
the Fourier quasi-crystals context. As an example, the Weyl law has the following analog:

Theorem 2.2. [AV] Let p be a stable polynomial, ¢ a positive vector and p,e the corre-
sponding constructed measure. Let d = (dy,ds ..., d,) be the degrees of p in each variable.
Then for any x € R and R > 0,

tp e[z, z+ R]) = dT.ER + error term,

with a uniform bound |d| =) d; on the error term.

Another example is a theorem recently proved by Kurasov and Sarnak on the spectrum
of metric graphs that translates to this context.

Theorem 2.3. [AV] Let p,l,\,, and d as in the previous theorem. Further assume that
p 1s wrreducible and has more then 2 monomials. Then A, has infinite dimension over Q
and does not contain any arithmetic progression of length bigger then C(d).

The constant C'(d) is given explicitly and depends only on d. More examples include

(1) We prove the existence of a gap distribution in analogy to the work of Barra and
Gaspard [BG0OQ].

(2) We prove a relation between the infimum of the gaps and the singularities of the
zero variety of p in C". In particular, if p is non singular, then A, is uniformly
discretd?]

2.1. Future work.

(1) Working on Conjecture using tropical geometry.

(2) By analyzing the gap distribution of y,, as a function of p and ¢, we may be able
to achieve progress in Conjecture for metric graphs.

(3) Constructing a model of random Fourier Quasi-Crystals in terms of random stable
polynomials. An example can be p(2) = det(1 — diag(2)U) where U is a random
unitary matrix, in which case we believe that the gap distribution will behaves like
CUE.

(4) Higher dimensional analogs. Is it possible to create quasi-crystals in higher dimen-
sions using stable varieties of higher co-dimension?

6n fact a Delone set.
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